On existence of directly finite, only one sided self-injective regular rings
نویسندگان
چکیده
منابع مشابه
On semiperfect rings of injective dimension one
We give a characterization of right Noetherian semiprime semiperfect and semidistributive rings with inj. dimAAA 6 1.
متن کاملOn One-sided Lie Nilpotent Ideals of Associative Rings
We prove that a Lie nilpotent one-sided ideal of an associative ring R is contained in a Lie solvable two-sided ideal of R. An estimation of derived length of such Lie solvable ideal is obtained depending on the class of Lie nilpotency of the Lie nilpotent one-sided ideal of R. One-sided Lie nilpotent ideals contained in ideals generated by commutators of the form [. . . [[r1, r2], . . .], rn−1...
متن کاملTorsionfree Dimension of Modules and Self-injective Dimension of Rings
Let R be a left and right Noetherian ring. We introduce the notion of the torsionfree dimension of finitely generated R-modules. For any n 0, we prove that R is a Gorenstein ring with self-injective dimension at most n if and only if every finitely generated left R-module and every finitely generated right R-module have torsionfree dimension at most n, if and only if every finitely generated le...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1991
ISSN: 0021-8693
DOI: 10.1016/0021-8693(91)90131-q